Concreto verde com a adição de resíduos agrícolas

concreto-verde

Da Revista Fapesp Online, por Marcos de Oliveira (ed. impressa 146 – Abril 2008):

As cinzas do bagaço de cana, da casca de arroz e os resíduos da indústria cerâmica são candidatos para entrar na preparação do concreto e diminuir a presença do cimento na elaboração desse produto. A redução do uso e a conseqüente limitação de sua industrialização são um fator importante para o ambiente porque, além de aproveitar esses materiais que muitas vezes são de difícil descarte e reutilização, contribuem para diminuir a emissão de dióxido de carbono (CO2) na atmosfera. A indústria cimenteira é responsável por 7% das emissões de CO2 no mundo. Segundo dados utilizados pelo Painel Intergovernamental de Mudanças Climáticas (IPCC, na sigla em inglês), para cada tonelada (t) de cimento produzido sobra para a atmosfera 1 t de CO2

“No Brasil esse dado corresponde a 0,67 t porque parte da matéria-prima usada no país para produção de cimento é obtida com o aproveitamento da escória (argila separada do material ferroso) de alto-for­no das siderúrgicas, e a matriz energética, ou a energia elétrica gasta no processo, é renovável, de hidrelétricas”, explica o professor Romildo Toledo Filho, da Coppe-UFRJ, coordenador da equipe que desenvolveu estudos para a incorporação dos resíduos ao cimento. Em 2007 foram produzidos 44 milhões de t de cimento no Brasil que resultaram em 29,4 milhões de t de CO2. Toledo calcula que com a incorporação dos resíduos será possível reduzir a emissão brasileira em quase 6 milhões de t ao substituir 20% da produção de cimento. 

Os dados levantados pelo grupo da Coppe indicam a existência de cerca de 10 milhões de t de resíduos disponíveis para a utilização pela indústria cimenteira. Cerca de 1,5 a 2 milhões são de cinzas da queima do bagaço de cana que sobram de caldeiras e geradores para a produção de energia elétrica para abastecimento das próprias usinas. “As cinzas do bagaço são ricas em sílica amorfa, diferente da forma cristalina encontrada, por exemplo, na areia. Na forma amorfa, ela pode reagir, em temperatura ambiente, com o hidróxido de cálcio, um dos produtos de hidratação do cimento.” Essa mesma estrutura é encontrada na casca de arroz calcinada. De cada 1 t de arroz colhido sobram 200 quilos de casca. No Brasil, a produção atingiu 11 milhões de t de arroz na safra 2006-2007, portanto produziram-se 2,2 milhões de t de casca. “Tanto a cinza do bagaço de cana como a da casca do arroz precisam, para integrar o concreto, passar por um processo de micronização quando o material é reduzido a partículas bem menores.”

A indústria brasileira de cerâmica produz cerca de 5 a 6 milhões de t de resíduos na produção de telhas, tijolos e pisos. Esse material, depois de calcinado e moído, pode substituir até 20% do total de cimento. Um estudo específico sobre o aproveitamento dos resíduos dessa índústria foi realizado pelo grupo da Coppe e apresentado na edição de setembro de 2007 da revista científica Cement and Concrete Re­search. Outro produto não aproveitável que se apresenta como alternativa, mas atinge um índice menor de substituição do cimento, de 5% a 10%, são as cinzas resultantes do lodo sanitário queimado obtidas das estações de tratamento de lixo sólido urbano. 

O concreto de desenvolvimento sustentável é fruto das preocupações mostradas tanto no IPCC como nos mecanismos de desenvolvimento limpo apresentados no Protocolo de Kyoto e aparece num momento em que cresce o consumo de cimento no mundo, principalmente na China, que utiliza 43% do cimento mundial. “Cálculos de pesquisadores da área, baseados no crescimento dos grandes países emergentes, indicam que, se o consumo de cimento é de 2,5 bilhões de t por ano, ele saltará para 6,5 bilhões de t em 50 anos, porque é, e continuará sendo, o material mais usado do mundo em infra-estrutura”, diz Toledo.  

Elemento ligante – O principal problema da indústria cimenteira é a liberação de CO2 durante a queima do carbonato de cálcio (CaCO3) para trans­formá-lo em óxido de cálcio, que representa 65% da composição do cimento. Também entram como ingredientes óxido de ferro, alumínio e gesso. O cimento funciona como elemento ligante entre os componentes do concreto, como água, areia e brita.  
A incorporação dos resíduos ainda não tem perspectivas de ser absorvida pela indústria cimenteira. “Nosso trabalho é acadêmico e está buscando soluções. Cabe à indústria implementar es­­sas soluções.” A Região Sudeste é o mai­or centro consumidor de cimento e também o maior produtor de resíduos. “Nesse momento estamos realizando um estudo para identificar as áreas produtoras de cinza de bagaço e casca de arroz, da indústria de cerâmica e onde estão localizadas as cimenteiras. Ao final teremos um mapa que poderá facilitar a parte logística de aproveitamento de resíduos. 

A importância dos estudos realizados na Coppe pode ser medida por uma notícia divulgada recentemente no jornal francês Le Monde (13 de março). Várias cimenteiras do mundo estão desenvolvendo soluções para diminuir a produção de cimento e a conseqüente liberação de CO2 na atmosfera. O grupo francês Lafarge, que produziu 135 milhões de t de cimento em 2007, já conseguiu diminuir em 16% as emissões de dióxido de carbono de um total de 20% previsto entre 1990 e 2010. Além de fábricas ultramodernas e de melhor desempenho, inclusive na China, a Lafarge, como outras cimenteiras, está diminuindo o uso de combustíveis fósseis para aquecer os enormes fornos onde o cimento é produzido. Para isso, as indústrias utilizam óleos usados variados, solventes, pneus, plásticos, casca de noz de palmeiras da Malásia e casca de arroz das Filipinas, na Ásia, casca de café de Uganda, na África, além de farinha animal.  A empresa francesa também introduziu na fabricação do cimento, na substituição de parte do carbonato de cálcio, as cinzas das centrais termelétricas e as escórias provenientes de usinas siderúrgicas.

Via Fapesp Online

Etanol a partir de mandioca doce

mandioca

Durante uma viagem de coleta de plantas na Amazônia o pesquisador Luiz Joaquim Castelo Branco Carvalho, da Embrapa Recursos Genéticos e Biotecnologia, de Brasília, conheceu uma variedade de mandioca que em vez de amido tem grande quantidade de açúcares na raiz.. A variedade descoberta pelo pesquisador é na realidade uma mutação genética, guardada e usada pelos índios brasileiros antes mesmo de os portugueses chegarem ao Brasil, para obtenção de bebida alcoólica.

A planta mutante, após um processo tradicional de seleção de variedades e cruzamento com plantas adaptadas a algumas regiões escolhidas para futuros plantios, resultou em uma variedade que dispensa o processo de hidrólise do amido da mandioca para transformação em açúcar e conversão em álcoois, inclusive o carburante para o combustível. “A eliminação da hidrólise do amido reduz em torno de 30% o consumo de energia no processo de produção de etanol de mandioca”, diz Carvalho.

Da variedade, chamada de mandioca açucarada, a raiz é colhida, moída, prensada e o caldo sai pronto para ser usado no processo de produção do álcool, o que a diferencia das outras matérias-primas utilizadas com a mesma finalidade. Pelo processo tradicional de produção de álcool de mandioca é preciso recorrer a enzimas para transformar o amido em açúcar.

A proposta de produzir álcool a partir da mandioca açucarada não significa concorrência com o etanol de cana-de-açúcar, mas sim a possibilidade de ocupar outros nichos agrícolas, como a Amazônia, o Nordeste e o Centro-Oeste. Os resultados de três anos de experimentos apontaram uma produção que variou de 8 a 60 toneladas de raiz por hectare, dependendo da variedade plantada.

Com a variedade testada foi obtido um rendimento de 14 metros cúbicos (m3) de álcool por hectare ao ano. Isso por um processo de fermentação que dura apenas dez horas. Pelo processo convencional de hidrólise de amido da mandioca o rendimento é em torno de 6,4 m3 de álcool por um processo de fermentação que dura cerca de 60 a 70 horas, enquanto o processo tradicional da cana chegou a 8 m3 num tempo de 48 horas.

Uma das características mais marcantes da mandioca é a capacidade de produção, mesmo em condições adversas. Esse comportamento é explicado pela eficiente associação de fungos com raízes da mandioca, conhecida como micorrizas, e pela associação com outros microorganismos fixadores de nitrogênio. A planta também é resistente à falta de chuvas tanto no plantio como durante o período produtivo.

Uma das grandes vantagens para exploração da mandioca como produtora de etanol é que não existe no mundo um país que disponha de tanta diversidade genética dessa planta como o Brasil, porque ela foi domesticada aqui. O amido da planta é uma fonte energética bastante eficiente. Enquanto 1 tonelada de cana produz 85 litros de álcool, 1 tonelada de mandioca com rendimento de 33% de amido e 2% de açúcares pode produzir 211 litros de álcool combustível, mas já existem variedades com 36% de amido.

Porém, os custos de produção da cana são menores se comparados aos da mandioca. O custo da tonelada da cana foi de R$ 37,60 por tonelada na safra de 2005 a 2006, enquanto o da mandioca correspondeu a R$ 84,52 por tonelada no mesmo período.

Via Revista Pesquisa FAPESP

15 prédios verdes ao redor do mundo

15_verdes2

Nos EUA, as construções prediais são responsáveis por cerca de 48% do total das emissões de dióxido de carbono. O uso excessivo de energia elétrica, o desperdício de água tratada e a disposição inadequada ou a falta de reaproveitamento de resíduos da construção contribuem para o aumento do impacto causado pelos prédios sobre o meio ambiente.

Abaixo, apresentam-se 15 prédios classificados entre os mais verdes do mundo:

  Via Geek About

O crescimento da geração de energia por fontes renováveis

Gráfico extra�do do relatório REN21 2007.

Um estudo realizado pela REN21 (Renewable Energy Policy Network for the 21st Century) juntamente com o Worldwatch Institute mostra que, dos 4.300 GW de energia consumida anualmente em todo o mundo, 240 GW provêm de fontes renováveis.

Em 2006, foi observado um crescimento na produção de energia por diversas fontes alternativas: Eólica (25-30%), Solar – fotovoltaica (50-60%), Solar – térmica (15-20%) e Biocombustíveis (15-20%). Estima-se que o uso de energia renovável fará com que se deixe de emitir por ano cerca de 5 gigatons (5Gt) de gases responsáveis pelo aumento do efeito estufa.

A energia eólica (a maior das novas fontes de energia) alcançou 90 GW de capacidade acumulada em 2007. A energia solar fotovoltaica gerou, em 2007, cerca de 8 GW.

Sistemas que utilizam a energia solar para o aquecimento de água são responsáveis pelo fornecimento de água quente para mais de 50 milhões de residências. Cerca de 25 milhões de residências localizadas em zonas rurais utilizam energia produzida por biogás, pequenas turbinas eólicas, energia solar e por outras tecnologias.

Os mais de U$100 bilhões aplicados no mundo todo no setor de energia renovável durante o ano de 2006 é, sem dúvida, um voto de confiança por parte dos investidores. Além disso, cerca de 50 países estabeleceram como meta o aumento no uso desse tipo de energia (13 países em desenvolvimento, todos os países da União Européia e diversas províncias dos EUA e Canadá) e 44 países/estados/províncias possuem um Renewable Electricity Standard (RES) que define que uma parcela da eletricidade produzida no futuro seja a partir de fontes renováveis.

No gráfico acima, observa-se a capacidade de geração de energia (em Gigawatts) por fontes renováveis (excetuando-se grandes hidroelétricas) do mundo e de diferentes países.

Abaixo, observa-se a evolução do investimento (em bilhões de dólares) anual realizado em energia renovável entre 1995 e 2007.

Gráfico extra�do do relatório REN21 2007.

O relatório completo pode ser acessado AQUI.

Vila Solar em Freiburg, Alemanha

vila_solar2

O Solarsiedlung ou “Vila Solar” é o projeto de construção solar mais moderno da Europa. Projetada por Rolf Disch, o condomínio segue as instruções da German Passive House (conforto interno sem a necessidade de aquecimento/resfriamento) e Plus Energy House (produz mais energia do que necessita). Além disso, o projeto contempla diversas questões ambientais como a seleção de materiais, consumo de energia, opções para transporte e métodos construtivos.

A Vila Solar (que possui 58 unidades residenciais) está localizada em Freiburg, a “capital solar” da Alemanha. O layout do projeto é baseado na orientação solar. As casas com terraços são orientadas para o sul e a distância entre os prédios é determinada de tal forma que permita a insolação e o aquecimento de cada casa pela incidência de radiação solar. Os prédios possuem dois e três andares.

vila_solar5

A eletricidade é gerada por painéis solares e a energia excedente é ligada e vendida à rede pública. A energia adicional nos meses de inverno é produzida por uma estação local abastecida com cavacos de madeira.

Antes de ser lançada nos coletores pluviais, a água da chuva passa por um sistema de drenagem natural. Parte dessa água ainda é coletada e armazenada para uso em irrigação e jardinagem ou utilizada para descarga de vasos sanitários.

vila_solar3

Outras estratégias mais tradicionais utilizadas incluem o uso de grandes aberturas na fachada sul para maximizar o ganho solar e aberturas pequenas no norte para minimizar a perda de calor. A projeção do telhado fornece sombra durante o verão mas permite a passagem do sol durante o inverno para aquecimento passivo.

Via Greenline

A Green House da revista Time

green_house_time

O norte-americano médio libera cerca de 22 toneladas de dióxido de carbono à atmosfera a cada ano. Uma grande parte dessas emissões são geradas pelas residências e pelo grande desperdício de energia. Segundo um estudo recente, uma das maneiras mais efetivas em termos de custo para a redução das emissões dos gases do efeito estufa é através do isolamento térmico dos prédios.

Clique na figura acima e arraste a lente pelos diferentes cômodos da casa para ter uma idéia do quanto de emissão de CO2 pode ser reduzido através de idéias bastante simples.

Via Time CNN

Eco-hotel voador

eco_hotel

Premiado pelo Design Observer 2008, o Manned Cloud é um hotel voador que permite a seus passageiros a descoberta de áreas inacessíveis sem a necessidade de infra-estrutura alguma (aeroportos, estradas, hotéis, etc.) a uma velocidade de até 280 Km/h. O conceito está sendo gerenciado pela Massaud Studio juntamente com o centro de pesquisas aeroespaciais da França.

O hotel voador é um grande zeppelin com serviço de bordo, acomodação (60 quartos) e salão de beleza. De acordo com seu criador, o hotel dirigível será capaz de fazer a volta ao mundo em 3 dias sem paradas. E isso sem deixar nenhum vestígio de poluição por onde passar. Sua construção está prevista para os próximos anos.

Via Bornrich